17 research outputs found

    Development Of An Integrated Informational Educational Environment At The Tusur University

    Get PDF
    Existing legislative and normative acts considerably increase application capabilities of various elements of electronic learning in educational process. Taking into account educational standards of the fourth generation which directly state the necessity of development of an electronic informational educational environment, the urgency of the development of such environment on the basis of available solutions has grown even more. Though the application of ready solutions 'on a turn-key basis' is an effective way of development of such environment, it remains very expensive. Within the limits of the given paper, the process of designing, development and realisation of an interactive educational environment on the basis of interaction of several free or available components on the example of the Faculty of Security at Tomsk State University of Control Systems and Radioelectronics is considered. In the given paper, the analysis of approaches to the informational educational environment development is carried out. On the basis of this analysis, the requirements to the informational educational environment are given and the development of its base structure is made. The components allowing realising all necessary functions and requirements to the development of the teaching aids used in the informational educational environment are chosen. The offered solutions allow meeting the requirements to the organisation of educational process according to educational standards of the fourth generation

    Evaluation of Speech Quality Through Recognition and Classification of Phonemes

    No full text
    This paper discusses an approach for assessing the quality of speech while undergoing speech rehabilitation. One of the main reasons for speech quality decrease during the surgical treatment of vocal tract diseases is the loss of the vocal tractˈs parts and the disruption of its symmetry. In particular, one of the most common oncological diseases of the oral cavity is cancer of the tongue. During surgical treatment, a glossectomy is performed, which leads to the need for speech rehabilitation to eliminate the occurring speech defects, leading to a decrease in speech intelligibility. In this paper, we present an automated approach for conducting the speech quality evaluation. The approach relies on a convolutional neural network (CNN). The main idea of the approach is to train an individual neural network for a patient before having an operation to recognize typical sounding of phonemes for their speech. The neural network will thereby be able to evaluate the similarity between the patientˈs speech before and after the surgery. The recognition based on the full phoneme set and the recognition by groups of phonemes were considered. The correspondence of assessments obtained through the autorecognition approach with those from the human-based approach is shown. The automated approach is principally applicable to defining boundaries between phonemes. The paper shows that iterative training of the neural network and continuous updating of the training dataset gradually improve the ability of the CNN to define boundaries between different phonemes

    Adversarial Attacks Impact on the Neural Network Performance and Visual Perception of Data under Attack

    No full text
    Machine learning algorithms based on neural networks are vulnerable to adversarial attacks. The use of attacks against authentication systems greatly reduces the accuracy of such a system, despite the complexity of generating a competitive example. As part of this study, a white-box adversarial attack on an authentication system was carried out. The basis of the authentication system is a neural network perceptron, trained on a dataset of frequency signatures of sign. For an attack on an atypical dataset, the following results were obtained: with an attack intensity of 25%, the authentication system availability decreases to 50% for a particular user, and with a further increase in the attack intensity, the accuracy decreases to 5%

    Adversarial Attacks Impact on the Neural Network Performance and Visual Perception of Data under Attack

    No full text
    Machine learning algorithms based on neural networks are vulnerable to adversarial attacks. The use of attacks against authentication systems greatly reduces the accuracy of such a system, despite the complexity of generating a competitive example. As part of this study, a white-box adversarial attack on an authentication system was carried out. The basis of the authentication system is a neural network perceptron, trained on a dataset of frequency signatures of sign. For an attack on an atypical dataset, the following results were obtained: with an attack intensity of 25%, the authentication system availability decreases to 50% for a particular user, and with a further increase in the attack intensity, the accuracy decreases to 5%

    Representation Learning for EEG-Based Biometrics Using Hilbert–Huang Transform

    No full text
    A promising approach to overcome the various shortcomings of password systems is the use of biometric authentication, in particular the use of electroencephalogram (EEG) data. In this paper, we propose a subject-independent learning method for EEG-based biometrics using Hilbert spectrograms of the data. The proposed neural network architecture treats the spectrogram as a collection of one-dimensional series and applies one-dimensional dilated convolutions over them, and a multi-similarity loss was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet EEG Motor Movement/Imagery Dataset (PEEGMIMDB) with a 14.63% Equal Error Rate (EER) achieved. The proposed approach’s main advantages are subject independence and suitability for interpretation via created spectrograms and the integrated gradients method

    Study of Generalized Phase Spectrum Time Delay Estimation Method for Source Positioning in Small Room Acoustic Environment

    No full text
    This paper considers the application of signal processing methods to passive indoor positioning with acoustics microphones. The key aspect of this problem is time-delay estimation (TDE) that is used to get the time difference of arrival of the source’s signal between the pair of distributed microphones. This paper studies the approach based on generalized phase spectrum (GPS) TDE methods. These methods use frequency-domain information about the received signals that make them different from widely applied generalized cross-correlation (GCC) methods. Despite the more challenging implementation, GPS TDE methods can be less demanding on computational resources and memory than conventional GCC ones. We propose an algorithmic implementation of a GPS estimator and study the various frequency weighting options in applications to TDE in a small room acoustic environment. The study shows that the GPS method is a reliable option for small acoustically dead rooms and could be effectively applied in presence of moderate in-band noises. However, GPS estimators are far less efficient in less acoustically dead environments, where other TDE options should be considered. The distinguishing feature of the proposed solution is the ability to get the time delay using a limited number of the adjusted bins. The solution could be useful for passively locating moving emitters of narrow-band continual noises using computationally simple frequency detection algorithms

    Neural Network-Based Price Tag Data Analysis

    No full text
    This paper compares neural networks, specifically Unet, MobileNetV2, VGG16 and YOLOv4-tiny, for image segmentation as part of a study aimed at finding an optimal solution for price tag data analysis. The neural networks considered were trained on an individual dataset collected by the authors. Additionally, this paper covers the automatic image text recognition approach using EasyOCR API. Research revealed that the optimal network for segmentation is YOLOv4-tiny, featuring a cross validation accuracy of 96.92%. EasyOCR accuracy was also calculated and is 95.22%

    Reconstruction of a 3D Human Foot Shape Model Based on a Video Stream Using Photogrammetry and Deep Neural Networks

    No full text
    Reconstructed 3D foot models can be used for 3D printing and further manufacturing of individual orthopedic shoes, as well as in medical research and for online shoe shopping. This study presents a technique based on the approach and algorithms of photogrammetry. The presented technique was used to reconstruct a 3D model of the foot shape, including the lower arch, using smartphone images. The technique is based on modern computer vision and artificial intelligence algorithms designed for image processing, obtaining sparse and dense point clouds, depth maps, and a final 3D model. For the segmentation of foot images, the Mask R-CNN neural network was used, which was trained on foot data from a set of 40 people. The obtained accuracy was 97.88%. The result of the study was a high-quality reconstructed 3D model. The standard deviation of linear indicators in length and width was 0.95 mm, with an average creation time of 1 min 35 s recorded. Integration of this technique into the business models of orthopedic enterprises, Internet stores, and medical organizations will allow basic manufacturing and shoe-fitting services to be carried out and will help medical research to be performed via the Internet

    Reconstruction of a 3D Human Foot Shape Model Based on a Video Stream Using Photogrammetry and Deep Neural Networks

    No full text
    Reconstructed 3D foot models can be used for 3D printing and further manufacturing of individual orthopedic shoes, as well as in medical research and for online shoe shopping. This study presents a technique based on the approach and algorithms of photogrammetry. The presented technique was used to reconstruct a 3D model of the foot shape, including the lower arch, using smartphone images. The technique is based on modern computer vision and artificial intelligence algorithms designed for image processing, obtaining sparse and dense point clouds, depth maps, and a final 3D model. For the segmentation of foot images, the Mask R-CNN neural network was used, which was trained on foot data from a set of 40 people. The obtained accuracy was 97.88%. The result of the study was a high-quality reconstructed 3D model. The standard deviation of linear indicators in length and width was 0.95 mm, with an average creation time of 1 min 35 s recorded. Integration of this technique into the business models of orthopedic enterprises, Internet stores, and medical organizations will allow basic manufacturing and shoe-fitting services to be carried out and will help medical research to be performed via the Internet
    corecore